Lesson 10.2 Area of Parallelograms and Trapezoids

For each parallelogram, draw and label the height h for the given base b.

1.

2.

For each parallelogram, label a base and a height. Use \boldsymbol{b} and \boldsymbol{h} .

3.

4.

Find the area of each parallelogram.

5.

6.

37

For each trapezoid, label the height and bases. Use h, b, and b.

7.

8.

Find the area of each trapezoid.

9.

10

Solve. Show your work.

11. The area of parallelogram EFGH is 207 square inches. Its height is 9 inches. Find the length of \overline{GH} .

38

12. The area of parallelogram *ABCD* is 112 square inches. The length of \overline{BC} is 16 inches. Find the height.

13. The area of trapezoid *PQRS* is 108 square centimeters. Find the height.

14. The area of trapezoid WXYZ is 375 square feet. Find the height.

Solve.

15. Three out of the four coordinates of the vertices of a parallelogram are A (0, 3), B (-3, -2), and D (5, 3). Plot the coordinates on the coordinate plane. Find the coordinates of point C. Then find the area of parallelogram ABCD.

16. The coordinates of the vertices of a trapezoid are P(-4, -1), Q(5, -1), R(3, 4), and S(0, 4). Plot the coordinates on the coordinate plane. Find the area of trapezoid PQRS.

40

Solve. Show your work.

17. The area of trapezoid *JKMN* is 136 square miles. Its height is 8 miles. Find the length of \overline{JN} .

18. Trapezoid *ABCD* is made up of triangles *ABC* and *ADC*. The area of trapezoid *ABCD* is 312 square yards. Find the area of triangle *ABC*.

23.

Area = $\frac{1}{2} \cdot 3 \cdot 5 = 7.5$ square units

- **24.** Base of triangle $HKM = \sqrt{64} = 8$ in. Height of triangle $HKM = \sqrt{144} - 8 = 4$ in. Area of triangle $HKM = \frac{1}{2} \cdot 8 \cdot 4 = 16$ in.² Area of the figure = 144 + 64 + 16 = 224 square inches
- **25.** Length of 1 side: $160 \div 4 = 40$ in. By observation, triangles *PQM* and *NPS* together make up $\frac{1}{2}$ of the square, and triangle *MNR* make up $\frac{1}{8}$ of the square.

$$1 - \frac{1}{2} - \frac{1}{8} = \frac{8}{8} - \frac{4}{8} - \frac{1}{8} = \frac{3}{8}$$

So, the area of triangle *PMN* is $\frac{3}{8}$ the area of *PQRS*.

Area of triangle *PMN*

$$= \frac{3}{8} \cdot 40 \cdot 40$$

= 600 square inches

 $=\sqrt{400} = 20$ inches

26. Length of the small square = 16 - 12 = 4 in. Area of the larger square = $4\left(\frac{1}{2} \cdot 16 \cdot 12\right) + 4 \cdot 4 = 400$ in.² Side length of the larger square

Lesson 10.2

1.

2.

3. Answers vary. Sample:

4. Answers vary. Sample:

- **5.** $26 \cdot 18 = 468$ square inches
- **6.** $14 \cdot 23 = 322$ square feet
- 7.

8.

- 9. $\frac{1}{2} \cdot 12(15 + 20)$ = 210 square inches
- **10.** $\frac{1}{2} \cdot 11(14 + 18)$ = 176 square centimeters
- **11.** $207 \div 9 = 23$ inches
- **12.** $112 \div 16 = 7$ inches
- **13.** Area = $\frac{1}{2}h(10 + 17) = 108 \text{ cm}^2$ $h = 108 \cdot 2 \div 27$ = 8 centimeters
- **14.** Area = $\frac{1}{2}h(30 + 20) = 375$ $h = 375 \cdot 2 \div 50 = 15$ feet

15.

The coordinates of point C are (2, -2). Base = 5 units, height = 5 units Area of parallelogram ABCD= $5 \cdot 5 = 25$ square units

16.

RS = 3 units, PQ = 9 units, height = 5 units Area of trapezoid PQRS= $\frac{1}{2} \cdot 5(3 + 9) = 30$ square units

17.
$$\frac{1}{2} \cdot 8(JN + 20) = 136$$

 $4(JN + 20) = 136$

$$4(JN + 20) = 136$$

 $JN = 136 \div 4 - 20 = 14$ miles

18.
$$\frac{1}{2} \cdot h(20 + 28) = 312$$

$$h = 312 \cdot 2 \div 48$$

= 13 yards

Area of triangle ABC

 $= \frac{1}{2} \cdot 20 \cdot 13 = 130 \text{ square yards}$

Lesson 10.3

- 1. 7 triangles
- 2. 10 triangles
- 3. Area of a triangle

$$=\frac{1}{2}\cdot 17.5\cdot 12$$

 $= 105 \text{ cm}^2$

Area of the pentagon

 $= 5 \cdot 105$

= 525 square centimeters

4. Area of a triangle

$$=\frac{1}{2}\cdot 12\cdot 10.3$$

 $= 61.8 \text{ in.}^2$

Area of the hexagon

 $= 6 \cdot 61.8$

= 370.8 square inches

5. The pentagon is made up of 5 identical triangles.

Area of each triangle

$$= 292.5 \div 5 = 58.5 \text{ ft}^2$$

1 side of the pentagon

$$=\frac{58.5 \cdot 2}{9} = 13 \text{ feet}$$

6. The hexagon is made up of

6 identical triangles.

Area of each triangle

$$= 93.6 \div 6 = 15.6 \text{ in.}^2$$

Height of each triangle

$$=\frac{15.6 \cdot 2}{6} = 5.2 \text{ in.}$$

Height of the hexagon

$$= 5.2 \cdot 2 = 10.4$$
 inches

7. Area of the hexagon

$$= 3 \cdot (7 \cdot 6)$$

= 126 square centimeters

8. Area of a triangle

$$=\frac{1}{2} \cdot 8.4 \cdot 13$$

 $= 54.6 \text{ cm}^2$

Area of the polygon

$$= 54.6 \cdot 10$$

= 546 square centimeters

9. Area of trapezoid ABHG

= Area of trapezoid CDEF

$$=\frac{1}{2}(10 + 24) \cdot 7$$

 $= 119 \text{ cm}^2$

Area of rectangle BCGF

- $= 24 \cdot 10$
- $= 240 \text{ cm}^2$

Area of the polygon

$$= 119 + 119 + 240$$

= 478 square centimeters

10. Area of triangle OAB

$$=\frac{1}{2}\cdot 18\cdot 26$$

 $= 234 \text{ cm}^2$

Area of the pentagon

 $= 234 \cdot 5$

 $= 1,170 \text{ cm}^2$

Area of triangle AEF

$$=\frac{1}{2}\cdot 42.3\cdot 24.7$$

 $= 522.405 \text{ cm}^2$

Area of the figure

$$= 1,170 + 522.405$$

= 1,692.405 square centimeters